Merge pull request #109 from edelveart/generators
docs (tonnetz-generators)
This commit is contained in:
@ -46,7 +46,7 @@ ${makeExample(
|
|||||||
true,
|
true,
|
||||||
)};
|
)};
|
||||||
|
|
||||||
When you want to dance with a dynamic system in controlled musical chaos, Topos is waiting for you:
|
When you want to dance with a dynamical system in controlled musical chaos, Topos is waiting for you:
|
||||||
|
|
||||||
${makeExample(
|
${makeExample(
|
||||||
"Truly scale free chaos inspired by Lorentz attractor",
|
"Truly scale free chaos inspired by Lorentz attractor",
|
||||||
@ -77,7 +77,7 @@ ${makeExample(
|
|||||||
${makeExample(
|
${makeExample(
|
||||||
"Henon and his discrete music",
|
"Henon and his discrete music",
|
||||||
`
|
`
|
||||||
function* henonmap(x = 0, y = 0, a = 1.4, b = 0.3) {
|
function* henonMap(x = 0, y = 0, a = 1.4, b = 0.3) {
|
||||||
while (true) {
|
while (true) {
|
||||||
const newX = 1 - a * x ** 2 + y;
|
const newX = 1 - a * x ** 2 + y;
|
||||||
const newY = b * x;
|
const newY = b * x;
|
||||||
@ -89,7 +89,7 @@ ${makeExample(
|
|||||||
|
|
||||||
beat(0.25) :: sound("sawtooth")
|
beat(0.25) :: sound("sawtooth")
|
||||||
.semitones(1,1,2,2,2,1,2,1)
|
.semitones(1,1,2,2,2,1,2,1)
|
||||||
.freq(cache("henonSynth", henonmap()))
|
.freq(cache("Hénon Synth", henonMap()))
|
||||||
.adsr(0, 0.1, 0.1, 0.5).out()
|
.adsr(0, 0.1, 0.1, 0.5).out()
|
||||||
|
|
||||||
z0('1 {-2}').octave(-2).sound('bd').out()
|
z0('1 {-2}').octave(-2).sound('bd').out()
|
||||||
@ -118,13 +118,14 @@ ${makeExample(
|
|||||||
}
|
}
|
||||||
|
|
||||||
beat(0.25) :: sound("triangle")
|
beat(0.25) :: sound("triangle")
|
||||||
.freq(cache("rossler attractor", rossler(3,4,1)))
|
.freq(cache("Rössler attractor", rossler(3,4,1)))
|
||||||
.adsr(0,.1,.1,.1)
|
.adsr(0,.1,.1,.1)
|
||||||
.log("freq").out()
|
.log("freq").out()
|
||||||
`,
|
`,
|
||||||
true,
|
true,
|
||||||
)};
|
)};
|
||||||
|
|
||||||
|
|
||||||
## OEIS integer sequences
|
## OEIS integer sequences
|
||||||
|
|
||||||
To find some inspiration - or to enter into the void - one can visit <a href="https://oeis.org/" target="_blank">The On-Line Encyclopedia of Integer Sequences (OEIS)</a> to find some interesting integer sequences.
|
To find some inspiration - or to enter into the void - one can visit <a href="https://oeis.org/" target="_blank">The On-Line Encyclopedia of Integer Sequences (OEIS)</a> to find some interesting integer sequences.
|
||||||
|
|||||||
Reference in New Issue
Block a user