Merge pull request #109 from edelveart/generators

docs (tonnetz-generators)
This commit is contained in:
Raphaël Forment
2023-12-17 23:57:39 +01:00
committed by GitHub

View File

@ -46,7 +46,7 @@ ${makeExample(
true,
)};
When you want to dance with a dynamic system in controlled musical chaos, Topos is waiting for you:
When you want to dance with a dynamical system in controlled musical chaos, Topos is waiting for you:
${makeExample(
"Truly scale free chaos inspired by Lorentz attractor",
@ -77,7 +77,7 @@ ${makeExample(
${makeExample(
"Henon and his discrete music",
`
function* henonmap(x = 0, y = 0, a = 1.4, b = 0.3) {
function* henonMap(x = 0, y = 0, a = 1.4, b = 0.3) {
while (true) {
const newX = 1 - a * x ** 2 + y;
const newY = b * x;
@ -89,7 +89,7 @@ ${makeExample(
beat(0.25) :: sound("sawtooth")
.semitones(1,1,2,2,2,1,2,1)
.freq(cache("henonSynth", henonmap()))
.freq(cache("non Synth", henonMap()))
.adsr(0, 0.1, 0.1, 0.5).out()
z0('1 {-2}').octave(-2).sound('bd').out()
@ -118,13 +118,14 @@ ${makeExample(
}
beat(0.25) :: sound("triangle")
.freq(cache("rossler attractor", rossler(3,4,1)))
.freq(cache("ssler attractor", rossler(3,4,1)))
.adsr(0,.1,.1,.1)
.log("freq").out()
`,
true,
)};
## OEIS integer sequences
To find some inspiration - or to enter into the void - one can visit <a href="https://oeis.org/" target="_blank">The On-Line Encyclopedia of Integer Sequences (OEIS)</a> to find some interesting integer sequences.