Files
rsgp/src/lib/audio/engines/DustNoise.ts

529 lines
16 KiB
TypeScript

import type { SynthEngine, PitchLock } from './SynthEngine';
interface DustNoiseParams {
// Dust density and character
dustDensity: number;
crackleAmount: number;
popDensity: number;
// Dust particle characteristics
particleDecay: number;
particlePitchRange: number;
particleResonance: number;
// Background texture
backgroundNoise: number;
noiseColor: number;
noiseFilter: number;
// Pops and clicks
popIntensity: number;
popPitchRange: number;
clickAmount: number;
// Dynamics and variation
dynamicRange: number;
irregularity: number;
// Stereo field
stereoWidth: number;
// Global envelope
globalAttack: number;
globalDecay: number;
}
export class DustNoise implements SynthEngine {
getName(): string {
return 'Pond';
}
getDescription(): string {
return 'Vinyl dust, crackle, and particle noise generator';
}
getType() {
return 'generative' as const;
}
randomParams(pitchLock?: PitchLock): DustNoiseParams {
const characterBias = Math.random();
let dustDensity: number;
let crackleAmount: number;
let popDensity: number;
let backgroundNoise: number;
if (characterBias < 0.5) {
// Very sparse, minimal particles
dustDensity = 0.01 + Math.random() * 0.08;
crackleAmount = Math.random() * 0.12;
popDensity = 0.01 + Math.random() * 0.05;
backgroundNoise = Math.random() * 0.08;
} else if (characterBias < 0.8) {
// Sparse, clean with occasional pops
dustDensity = 0.1 + Math.random() * 0.15;
crackleAmount = Math.random() * 0.25;
popDensity = 0.06 + Math.random() * 0.1;
backgroundNoise = 0.05 + Math.random() * 0.15;
} else {
// Medium vinyl character (was heavy)
dustDensity = 0.3 + Math.random() * 0.25;
crackleAmount = 0.25 + Math.random() * 0.3;
popDensity = 0.18 + Math.random() * 0.15;
backgroundNoise = 0.15 + Math.random() * 0.25;
}
const particleDecay = 0.3 + Math.random() * 0.6;
const particlePitchRange = 0.2 + Math.random() * 0.7;
const particleResonance = Math.random() * 0.6;
const noiseColor = Math.random();
const noiseFilter = Math.random() * 0.8;
const popIntensity = 0.3 + Math.random() * 0.6;
const popPitchRange = 0.2 + Math.random() * 0.7;
const clickAmount = Math.random() * 0.7;
const dynamicRange = 0.3 + Math.random() * 0.6;
const irregularity = Math.random() * 0.7;
const stereoWidth = Math.random() * 0.8;
const globalAttack = Math.random() * 0.08;
const globalDecay = 0.3 + Math.random() * 0.5;
return {
dustDensity,
crackleAmount,
popDensity,
particleDecay,
particlePitchRange,
particleResonance,
backgroundNoise,
noiseColor,
noiseFilter,
popIntensity,
popPitchRange,
clickAmount,
dynamicRange,
irregularity,
stereoWidth,
globalAttack,
globalDecay
};
}
mutateParams(params: DustNoiseParams, mutationAmount: number = 0.15, pitchLock?: PitchLock): DustNoiseParams {
const mutate = (value: number, amount: number = 0.15): number => {
return Math.max(0, Math.min(1, value + (Math.random() - 0.5) * amount));
};
return {
dustDensity: mutate(params.dustDensity, 0.2),
crackleAmount: mutate(params.crackleAmount, 0.25),
popDensity: mutate(params.popDensity, 0.2),
particleDecay: mutate(params.particleDecay, 0.2),
particlePitchRange: pitchLock?.enabled ? params.particlePitchRange : mutate(params.particlePitchRange, 0.25),
particleResonance: mutate(params.particleResonance, 0.2),
backgroundNoise: mutate(params.backgroundNoise, 0.2),
noiseColor: mutate(params.noiseColor, 0.25),
noiseFilter: mutate(params.noiseFilter, 0.2),
popIntensity: mutate(params.popIntensity, 0.2),
popPitchRange: pitchLock?.enabled ? params.popPitchRange : mutate(params.popPitchRange, 0.25),
clickAmount: mutate(params.clickAmount, 0.2),
dynamicRange: mutate(params.dynamicRange, 0.2),
irregularity: mutate(params.irregularity, 0.2),
stereoWidth: mutate(params.stereoWidth, 0.2),
globalAttack: mutate(params.globalAttack, 0.15),
globalDecay: mutate(params.globalDecay, 0.2)
};
}
generate(params: DustNoiseParams, sampleRate: number, duration: number, pitchLock?: PitchLock): [Float32Array, Float32Array] {
const numSamples = Math.floor(sampleRate * duration);
const left = new Float32Array(numSamples);
const right = new Float32Array(numSamples);
// Generate dust particles
const avgDustPerSecond = 5 + params.dustDensity * 120;
const totalDust = Math.floor(avgDustPerSecond * duration);
// Generate pops
const avgPopsPerSecond = 0.5 + params.popDensity * 12;
const totalPops = Math.floor(avgPopsPerSecond * duration);
// Create dust particles
const dustParticles: Array<{
startTime: number;
decay: number;
pitch: number;
amplitude: number;
resonance: number;
stereoOffset: number;
}> = [];
const baseDustPitch = pitchLock?.enabled ? pitchLock.frequency : 800 + params.particlePitchRange * 2000;
const basePopPitch = pitchLock?.enabled ? pitchLock.frequency : 200 + params.popPitchRange * 1000;
for (let i = 0; i < totalDust; i++) {
const startTime = Math.random() * duration;
const decay = (0.001 + params.particleDecay * 0.02) * (0.5 + Math.random() * 0.5);
const pitchVariation = pitchLock?.enabled ? 0.2 : params.particlePitchRange;
const pitchFreq = baseDustPitch + (Math.random() - 0.5) * pitchVariation * baseDustPitch;
const amplitude = (0.3 + Math.random() * 0.7) * (0.5 + params.dynamicRange * 0.5);
const resonance = params.particleResonance * (0.5 + Math.random() * 0.5);
const stereoOffset = (Math.random() - 0.5) * params.stereoWidth * 0.3;
dustParticles.push({
startTime,
decay,
pitch: pitchFreq,
amplitude,
resonance,
stereoOffset
});
}
// Create pops
const pops: Array<{
startTime: number;
intensity: number;
pitch: number;
isClick: boolean;
stereoOffset: number;
}> = [];
for (let i = 0; i < totalPops; i++) {
const startTime = Math.random() * duration;
const intensity = params.popIntensity * (0.5 + Math.random() * 0.5);
const pitchVariation = pitchLock?.enabled ? 0.2 : params.popPitchRange;
const pitchFreq = basePopPitch + (Math.random() - 0.5) * pitchVariation * basePopPitch;
const isClick = Math.random() < params.clickAmount;
const stereoOffset = (Math.random() - 0.5) * params.stereoWidth * 0.5;
pops.push({
startTime,
intensity,
pitch: pitchFreq,
isClick,
stereoOffset
});
}
// Sort events by time
dustParticles.sort((a, b) => a.startTime - b.startTime);
pops.sort((a, b) => a.startTime - b.startTime);
// Noise state
const pinkStateL = new Float32Array(7);
const pinkStateR = new Float32Array(7);
let brownStateL = 0;
let brownStateR = 0;
// Filter state for background noise
let bgFilterStateL1 = 0;
let bgFilterStateL2 = 0;
let bgFilterStateR1 = 0;
let bgFilterStateR2 = 0;
// Active particles
let dustIndex = 0;
let popIndex = 0;
const activeDust: Array<{
particle: typeof dustParticles[0];
startSample: number;
phase: number;
}> = [];
const activePops: Array<{
pop: typeof pops[0];
startSample: number;
phase: number;
}> = [];
// Crackle state (for vinyl crackle texture)
let cracklePhase = 0;
const crackleFreq = 20 + params.crackleAmount * 80;
for (let i = 0; i < numSamples; i++) {
const t = i / sampleRate;
// Add new dust particles
while (dustIndex < dustParticles.length && dustParticles[dustIndex].startTime <= t) {
activeDust.push({
particle: dustParticles[dustIndex],
startSample: i,
phase: Math.random() * Math.PI * 2
});
dustIndex++;
}
// Add new pops
while (popIndex < pops.length && pops[popIndex].startTime <= t) {
activePops.push({
pop: pops[popIndex],
startSample: i,
phase: Math.random() * Math.PI * 2
});
popIndex++;
}
// Global envelope
const globalEnv = this.globalEnvelope(
i,
numSamples,
params.globalAttack,
params.globalDecay,
duration,
sampleRate
);
// Background noise
const whiteL = Math.random() * 2 - 1;
const whiteR = Math.random() * 2 - 1;
brownStateL = this.updateBrownState(brownStateL, whiteL);
brownStateR = this.updateBrownState(brownStateR, whiteR);
let bgNoiseL = this.selectNoiseColor(params.noiseColor, whiteL, pinkStateL, brownStateL);
let bgNoiseR = this.selectNoiseColor(params.noiseColor, whiteR, pinkStateR, brownStateR);
// Filter background noise
if (params.noiseFilter > 0.1) {
const filterFreq = 500 + params.noiseFilter * 3000;
const filtered = this.stateVariableFilter(
bgNoiseL,
filterFreq,
1,
sampleRate,
bgFilterStateL1,
bgFilterStateL2
);
bgFilterStateL1 = filtered.state1;
bgFilterStateL2 = filtered.state2;
bgNoiseL = filtered.output;
const filteredR = this.stateVariableFilter(
bgNoiseR,
filterFreq,
1,
sampleRate,
bgFilterStateR1,
bgFilterStateR2
);
bgFilterStateR1 = filteredR.state1;
bgFilterStateR2 = filteredR.state2;
bgNoiseR = filteredR.output;
}
// Crackle modulation
cracklePhase += (2 * Math.PI * crackleFreq) / sampleRate;
const crackleMod = Math.sin(cracklePhase) * 0.5 + 0.5;
const crackleEnv = Math.pow(crackleMod, 3) * params.crackleAmount;
bgNoiseL *= params.backgroundNoise * (1 + crackleEnv);
bgNoiseR *= params.backgroundNoise * (1 + crackleEnv);
// Render dust particles
let dustL = 0;
let dustR = 0;
for (let d = activeDust.length - 1; d >= 0; d--) {
const active = activeDust[d];
const particle = active.particle;
const elapsed = (i - active.startSample) / sampleRate;
if (elapsed > particle.decay * 5) {
activeDust.splice(d, 1);
continue;
}
const env = Math.exp(-elapsed / particle.decay);
const phaseInc = (2 * Math.PI * particle.pitch) / sampleRate;
active.phase += phaseInc;
let signal = Math.sin(active.phase);
// Add resonance (filter-like character)
if (particle.resonance > 0.1) {
signal = signal * (1 - particle.resonance) +
Math.sin(active.phase * 2) * particle.resonance * 0.3 +
Math.sin(active.phase * 3) * particle.resonance * 0.15;
}
const output = signal * env * particle.amplitude;
const panL = 0.5 - particle.stereoOffset;
const panR = 0.5 + particle.stereoOffset;
dustL += output * panL;
dustR += output * panR;
}
// Render pops and clicks
let popL = 0;
let popR = 0;
for (let p = activePops.length - 1; p >= 0; p--) {
const active = activePops[p];
const pop = active.pop;
const elapsed = (i - active.startSample) / sampleRate;
const maxDuration = pop.isClick ? 0.001 : 0.008;
if (elapsed > maxDuration) {
activePops.splice(p, 1);
continue;
}
const env = Math.exp(-elapsed * (pop.isClick ? 2000 : 300));
let signal: number;
if (pop.isClick) {
// Sharp click (very short impulse)
signal = (Math.random() * 2 - 1) * (elapsed < 0.0003 ? 1 : 0.3);
} else {
// Pop with pitch
const phaseInc = (2 * Math.PI * pop.pitch) / sampleRate;
active.phase += phaseInc;
signal = Math.sin(active.phase) * 0.7 + (Math.random() * 2 - 1) * 0.3;
}
const output = signal * env * pop.intensity;
const panL = 0.5 - pop.stereoOffset;
const panR = 0.5 + pop.stereoOffset;
popL += output * panL;
popR += output * panR;
}
// Combine all elements
let sampleL = bgNoiseL + dustL + popL;
let sampleR = bgNoiseR + dustR + popR;
// Apply irregularity (random amplitude modulation)
if (params.irregularity > 0.1) {
const irregMod = 1 + (Math.random() - 0.5) * params.irregularity * 0.3;
sampleL *= irregMod;
sampleR *= irregMod;
}
// Apply global envelope
sampleL *= globalEnv;
sampleR *= globalEnv;
// Soft clipping
left[i] = this.softClip(sampleL * 0.6);
right[i] = this.softClip(sampleR * 0.6);
}
// Normalize
let peak = 0;
for (let i = 0; i < numSamples; i++) {
peak = Math.max(peak, Math.abs(left[i]), Math.abs(right[i]));
}
if (peak > 0.001) {
const normGain = 0.95 / peak;
for (let i = 0; i < numSamples; i++) {
left[i] *= normGain;
right[i] *= normGain;
}
}
return [left, right];
}
private globalEnvelope(
sample: number,
totalSamples: number,
attack: number,
decay: number,
duration: number,
sampleRate: number
): number {
const attackSamples = Math.floor(attack * duration * sampleRate);
const phase = sample / totalSamples;
if (sample < attackSamples && attackSamples > 0) {
const attackPhase = sample / attackSamples;
return attackPhase * attackPhase * (3 - 2 * attackPhase);
}
const decayRate = Math.max(decay, 0.1);
const decayPhase = (sample - attackSamples) / (totalSamples - attackSamples);
return Math.exp(-decayPhase / decayRate);
}
private updateBrownState(brownState: number, whiteNoise: number): number {
return (brownState + whiteNoise * 0.02) * 0.98;
}
private selectNoiseColor(
colorParam: number,
whiteNoise: number,
pinkState: Float32Array,
brownState: number
): number {
if (colorParam < 0.33) {
return whiteNoise;
} else if (colorParam < 0.66) {
pinkState[0] = 0.99886 * pinkState[0] + whiteNoise * 0.0555179;
pinkState[1] = 0.99332 * pinkState[1] + whiteNoise * 0.0750759;
pinkState[2] = 0.96900 * pinkState[2] + whiteNoise * 0.1538520;
pinkState[3] = 0.86650 * pinkState[3] + whiteNoise * 0.3104856;
pinkState[4] = 0.55000 * pinkState[4] + whiteNoise * 0.5329522;
pinkState[5] = -0.7616 * pinkState[5] - whiteNoise * 0.0168980;
const pink = pinkState[0] + pinkState[1] + pinkState[2] + pinkState[3] +
pinkState[4] + pinkState[5] + pinkState[6] + whiteNoise * 0.5362;
pinkState[6] = whiteNoise * 0.115926;
return pink * 0.11;
} else {
return brownState * 2.5;
}
}
private stateVariableFilter(
input: number,
cutoff: number,
resonance: number,
sampleRate: number,
state1: number,
state2: number
): { output: number; state1: number; state2: number } {
const normalizedFreq = Math.min(cutoff / sampleRate, 0.48);
const f = 2 * Math.sin(Math.PI * normalizedFreq);
const q = Math.max(1 / Math.min(resonance, 10), 0.02);
const lowpass = state2 + f * state1;
const highpass = input - lowpass - q * state1;
const bandpass = f * highpass + state1;
const newState1 = Math.max(-2, Math.min(2, Math.abs(bandpass) > 1e-10 ? bandpass : 0));
const newState2 = Math.max(-2, Math.min(2, Math.abs(lowpass) > 1e-10 ? lowpass : 0));
return {
output: bandpass,
state1: newState1,
state2: newState2
};
}
private softClip(x: number): number {
if (x > 1) {
return 1;
} else if (x < -1) {
return -1;
} else if (x > 0.66) {
return (3 - (2 - 3 * x) ** 2) / 3;
} else if (x < -0.66) {
return -(3 - (2 - 3 * -x) ** 2) / 3;
} else {
return x;
}
}
}