Adding two engines and one processor

This commit is contained in:
2025-10-13 10:33:12 +02:00
parent c1f7cc02fd
commit cb730237f5
5 changed files with 1129 additions and 0 deletions

View File

@ -0,0 +1,528 @@
import type { SynthEngine, PitchLock } from './SynthEngine';
interface DustNoiseParams {
// Dust density and character
dustDensity: number;
crackleAmount: number;
popDensity: number;
// Dust particle characteristics
particleDecay: number;
particlePitchRange: number;
particleResonance: number;
// Background texture
backgroundNoise: number;
noiseColor: number;
noiseFilter: number;
// Pops and clicks
popIntensity: number;
popPitchRange: number;
clickAmount: number;
// Dynamics and variation
dynamicRange: number;
irregularity: number;
// Stereo field
stereoWidth: number;
// Global envelope
globalAttack: number;
globalDecay: number;
}
export class DustNoise implements SynthEngine {
getName(): string {
return 'Pond';
}
getDescription(): string {
return 'Vinyl dust, crackle, and particle noise generator';
}
getType() {
return 'generative' as const;
}
randomParams(pitchLock?: PitchLock): DustNoiseParams {
const characterBias = Math.random();
let dustDensity: number;
let crackleAmount: number;
let popDensity: number;
let backgroundNoise: number;
if (characterBias < 0.5) {
// Very sparse, minimal particles
dustDensity = 0.01 + Math.random() * 0.08;
crackleAmount = Math.random() * 0.12;
popDensity = 0.01 + Math.random() * 0.05;
backgroundNoise = Math.random() * 0.08;
} else if (characterBias < 0.8) {
// Sparse, clean with occasional pops
dustDensity = 0.1 + Math.random() * 0.15;
crackleAmount = Math.random() * 0.25;
popDensity = 0.06 + Math.random() * 0.1;
backgroundNoise = 0.05 + Math.random() * 0.15;
} else {
// Medium vinyl character (was heavy)
dustDensity = 0.3 + Math.random() * 0.25;
crackleAmount = 0.25 + Math.random() * 0.3;
popDensity = 0.18 + Math.random() * 0.15;
backgroundNoise = 0.15 + Math.random() * 0.25;
}
const particleDecay = 0.3 + Math.random() * 0.6;
const particlePitchRange = 0.2 + Math.random() * 0.7;
const particleResonance = Math.random() * 0.6;
const noiseColor = Math.random();
const noiseFilter = Math.random() * 0.8;
const popIntensity = 0.3 + Math.random() * 0.6;
const popPitchRange = 0.2 + Math.random() * 0.7;
const clickAmount = Math.random() * 0.7;
const dynamicRange = 0.3 + Math.random() * 0.6;
const irregularity = Math.random() * 0.7;
const stereoWidth = Math.random() * 0.8;
const globalAttack = Math.random() * 0.08;
const globalDecay = 0.3 + Math.random() * 0.5;
return {
dustDensity,
crackleAmount,
popDensity,
particleDecay,
particlePitchRange,
particleResonance,
backgroundNoise,
noiseColor,
noiseFilter,
popIntensity,
popPitchRange,
clickAmount,
dynamicRange,
irregularity,
stereoWidth,
globalAttack,
globalDecay
};
}
mutateParams(params: DustNoiseParams, mutationAmount: number = 0.15, pitchLock?: PitchLock): DustNoiseParams {
const mutate = (value: number, amount: number = 0.15): number => {
return Math.max(0, Math.min(1, value + (Math.random() - 0.5) * amount));
};
return {
dustDensity: mutate(params.dustDensity, 0.2),
crackleAmount: mutate(params.crackleAmount, 0.25),
popDensity: mutate(params.popDensity, 0.2),
particleDecay: mutate(params.particleDecay, 0.2),
particlePitchRange: pitchLock?.enabled ? params.particlePitchRange : mutate(params.particlePitchRange, 0.25),
particleResonance: mutate(params.particleResonance, 0.2),
backgroundNoise: mutate(params.backgroundNoise, 0.2),
noiseColor: mutate(params.noiseColor, 0.25),
noiseFilter: mutate(params.noiseFilter, 0.2),
popIntensity: mutate(params.popIntensity, 0.2),
popPitchRange: pitchLock?.enabled ? params.popPitchRange : mutate(params.popPitchRange, 0.25),
clickAmount: mutate(params.clickAmount, 0.2),
dynamicRange: mutate(params.dynamicRange, 0.2),
irregularity: mutate(params.irregularity, 0.2),
stereoWidth: mutate(params.stereoWidth, 0.2),
globalAttack: mutate(params.globalAttack, 0.15),
globalDecay: mutate(params.globalDecay, 0.2)
};
}
generate(params: DustNoiseParams, sampleRate: number, duration: number, pitchLock?: PitchLock): [Float32Array, Float32Array] {
const numSamples = Math.floor(sampleRate * duration);
const left = new Float32Array(numSamples);
const right = new Float32Array(numSamples);
// Generate dust particles
const avgDustPerSecond = 5 + params.dustDensity * 120;
const totalDust = Math.floor(avgDustPerSecond * duration);
// Generate pops
const avgPopsPerSecond = 0.5 + params.popDensity * 12;
const totalPops = Math.floor(avgPopsPerSecond * duration);
// Create dust particles
const dustParticles: Array<{
startTime: number;
decay: number;
pitch: number;
amplitude: number;
resonance: number;
stereoOffset: number;
}> = [];
const baseDustPitch = pitchLock?.enabled ? pitchLock.frequency : 800 + params.particlePitchRange * 2000;
const basePopPitch = pitchLock?.enabled ? pitchLock.frequency : 200 + params.popPitchRange * 1000;
for (let i = 0; i < totalDust; i++) {
const startTime = Math.random() * duration;
const decay = (0.001 + params.particleDecay * 0.02) * (0.5 + Math.random() * 0.5);
const pitchVariation = pitchLock?.enabled ? 0.2 : params.particlePitchRange;
const pitchFreq = baseDustPitch + (Math.random() - 0.5) * pitchVariation * baseDustPitch;
const amplitude = (0.3 + Math.random() * 0.7) * (0.5 + params.dynamicRange * 0.5);
const resonance = params.particleResonance * (0.5 + Math.random() * 0.5);
const stereoOffset = (Math.random() - 0.5) * params.stereoWidth * 0.3;
dustParticles.push({
startTime,
decay,
pitch: pitchFreq,
amplitude,
resonance,
stereoOffset
});
}
// Create pops
const pops: Array<{
startTime: number;
intensity: number;
pitch: number;
isClick: boolean;
stereoOffset: number;
}> = [];
for (let i = 0; i < totalPops; i++) {
const startTime = Math.random() * duration;
const intensity = params.popIntensity * (0.5 + Math.random() * 0.5);
const pitchVariation = pitchLock?.enabled ? 0.2 : params.popPitchRange;
const pitchFreq = basePopPitch + (Math.random() - 0.5) * pitchVariation * basePopPitch;
const isClick = Math.random() < params.clickAmount;
const stereoOffset = (Math.random() - 0.5) * params.stereoWidth * 0.5;
pops.push({
startTime,
intensity,
pitch: pitchFreq,
isClick,
stereoOffset
});
}
// Sort events by time
dustParticles.sort((a, b) => a.startTime - b.startTime);
pops.sort((a, b) => a.startTime - b.startTime);
// Noise state
const pinkStateL = new Float32Array(7);
const pinkStateR = new Float32Array(7);
let brownStateL = 0;
let brownStateR = 0;
// Filter state for background noise
let bgFilterStateL1 = 0;
let bgFilterStateL2 = 0;
let bgFilterStateR1 = 0;
let bgFilterStateR2 = 0;
// Active particles
let dustIndex = 0;
let popIndex = 0;
const activeDust: Array<{
particle: typeof dustParticles[0];
startSample: number;
phase: number;
}> = [];
const activePops: Array<{
pop: typeof pops[0];
startSample: number;
phase: number;
}> = [];
// Crackle state (for vinyl crackle texture)
let cracklePhase = 0;
const crackleFreq = 20 + params.crackleAmount * 80;
for (let i = 0; i < numSamples; i++) {
const t = i / sampleRate;
// Add new dust particles
while (dustIndex < dustParticles.length && dustParticles[dustIndex].startTime <= t) {
activeDust.push({
particle: dustParticles[dustIndex],
startSample: i,
phase: Math.random() * Math.PI * 2
});
dustIndex++;
}
// Add new pops
while (popIndex < pops.length && pops[popIndex].startTime <= t) {
activePops.push({
pop: pops[popIndex],
startSample: i,
phase: Math.random() * Math.PI * 2
});
popIndex++;
}
// Global envelope
const globalEnv = this.globalEnvelope(
i,
numSamples,
params.globalAttack,
params.globalDecay,
duration,
sampleRate
);
// Background noise
const whiteL = Math.random() * 2 - 1;
const whiteR = Math.random() * 2 - 1;
brownStateL = this.updateBrownState(brownStateL, whiteL);
brownStateR = this.updateBrownState(brownStateR, whiteR);
let bgNoiseL = this.selectNoiseColor(params.noiseColor, whiteL, pinkStateL, brownStateL);
let bgNoiseR = this.selectNoiseColor(params.noiseColor, whiteR, pinkStateR, brownStateR);
// Filter background noise
if (params.noiseFilter > 0.1) {
const filterFreq = 500 + params.noiseFilter * 3000;
const filtered = this.stateVariableFilter(
bgNoiseL,
filterFreq,
1,
sampleRate,
bgFilterStateL1,
bgFilterStateL2
);
bgFilterStateL1 = filtered.state1;
bgFilterStateL2 = filtered.state2;
bgNoiseL = filtered.output;
const filteredR = this.stateVariableFilter(
bgNoiseR,
filterFreq,
1,
sampleRate,
bgFilterStateR1,
bgFilterStateR2
);
bgFilterStateR1 = filteredR.state1;
bgFilterStateR2 = filteredR.state2;
bgNoiseR = filteredR.output;
}
// Crackle modulation
cracklePhase += (2 * Math.PI * crackleFreq) / sampleRate;
const crackleMod = Math.sin(cracklePhase) * 0.5 + 0.5;
const crackleEnv = Math.pow(crackleMod, 3) * params.crackleAmount;
bgNoiseL *= params.backgroundNoise * (1 + crackleEnv);
bgNoiseR *= params.backgroundNoise * (1 + crackleEnv);
// Render dust particles
let dustL = 0;
let dustR = 0;
for (let d = activeDust.length - 1; d >= 0; d--) {
const active = activeDust[d];
const particle = active.particle;
const elapsed = (i - active.startSample) / sampleRate;
if (elapsed > particle.decay * 5) {
activeDust.splice(d, 1);
continue;
}
const env = Math.exp(-elapsed / particle.decay);
const phaseInc = (2 * Math.PI * particle.pitch) / sampleRate;
active.phase += phaseInc;
let signal = Math.sin(active.phase);
// Add resonance (filter-like character)
if (particle.resonance > 0.1) {
signal = signal * (1 - particle.resonance) +
Math.sin(active.phase * 2) * particle.resonance * 0.3 +
Math.sin(active.phase * 3) * particle.resonance * 0.15;
}
const output = signal * env * particle.amplitude;
const panL = 0.5 - particle.stereoOffset;
const panR = 0.5 + particle.stereoOffset;
dustL += output * panL;
dustR += output * panR;
}
// Render pops and clicks
let popL = 0;
let popR = 0;
for (let p = activePops.length - 1; p >= 0; p--) {
const active = activePops[p];
const pop = active.pop;
const elapsed = (i - active.startSample) / sampleRate;
const maxDuration = pop.isClick ? 0.001 : 0.008;
if (elapsed > maxDuration) {
activePops.splice(p, 1);
continue;
}
const env = Math.exp(-elapsed * (pop.isClick ? 2000 : 300));
let signal: number;
if (pop.isClick) {
// Sharp click (very short impulse)
signal = (Math.random() * 2 - 1) * (elapsed < 0.0003 ? 1 : 0.3);
} else {
// Pop with pitch
const phaseInc = (2 * Math.PI * pop.pitch) / sampleRate;
active.phase += phaseInc;
signal = Math.sin(active.phase) * 0.7 + (Math.random() * 2 - 1) * 0.3;
}
const output = signal * env * pop.intensity;
const panL = 0.5 - pop.stereoOffset;
const panR = 0.5 + pop.stereoOffset;
popL += output * panL;
popR += output * panR;
}
// Combine all elements
let sampleL = bgNoiseL + dustL + popL;
let sampleR = bgNoiseR + dustR + popR;
// Apply irregularity (random amplitude modulation)
if (params.irregularity > 0.1) {
const irregMod = 1 + (Math.random() - 0.5) * params.irregularity * 0.3;
sampleL *= irregMod;
sampleR *= irregMod;
}
// Apply global envelope
sampleL *= globalEnv;
sampleR *= globalEnv;
// Soft clipping
left[i] = this.softClip(sampleL * 0.6);
right[i] = this.softClip(sampleR * 0.6);
}
// Normalize
let peak = 0;
for (let i = 0; i < numSamples; i++) {
peak = Math.max(peak, Math.abs(left[i]), Math.abs(right[i]));
}
if (peak > 0.001) {
const normGain = 0.95 / peak;
for (let i = 0; i < numSamples; i++) {
left[i] *= normGain;
right[i] *= normGain;
}
}
return [left, right];
}
private globalEnvelope(
sample: number,
totalSamples: number,
attack: number,
decay: number,
duration: number,
sampleRate: number
): number {
const attackSamples = Math.floor(attack * duration * sampleRate);
const phase = sample / totalSamples;
if (sample < attackSamples && attackSamples > 0) {
const attackPhase = sample / attackSamples;
return attackPhase * attackPhase * (3 - 2 * attackPhase);
}
const decayRate = Math.max(decay, 0.1);
const decayPhase = (sample - attackSamples) / (totalSamples - attackSamples);
return Math.exp(-decayPhase / decayRate);
}
private updateBrownState(brownState: number, whiteNoise: number): number {
return (brownState + whiteNoise * 0.02) * 0.98;
}
private selectNoiseColor(
colorParam: number,
whiteNoise: number,
pinkState: Float32Array,
brownState: number
): number {
if (colorParam < 0.33) {
return whiteNoise;
} else if (colorParam < 0.66) {
pinkState[0] = 0.99886 * pinkState[0] + whiteNoise * 0.0555179;
pinkState[1] = 0.99332 * pinkState[1] + whiteNoise * 0.0750759;
pinkState[2] = 0.96900 * pinkState[2] + whiteNoise * 0.1538520;
pinkState[3] = 0.86650 * pinkState[3] + whiteNoise * 0.3104856;
pinkState[4] = 0.55000 * pinkState[4] + whiteNoise * 0.5329522;
pinkState[5] = -0.7616 * pinkState[5] - whiteNoise * 0.0168980;
const pink = pinkState[0] + pinkState[1] + pinkState[2] + pinkState[3] +
pinkState[4] + pinkState[5] + pinkState[6] + whiteNoise * 0.5362;
pinkState[6] = whiteNoise * 0.115926;
return pink * 0.11;
} else {
return brownState * 2.5;
}
}
private stateVariableFilter(
input: number,
cutoff: number,
resonance: number,
sampleRate: number,
state1: number,
state2: number
): { output: number; state1: number; state2: number } {
const normalizedFreq = Math.min(cutoff / sampleRate, 0.48);
const f = 2 * Math.sin(Math.PI * normalizedFreq);
const q = Math.max(1 / Math.min(resonance, 10), 0.02);
const lowpass = state2 + f * state1;
const highpass = input - lowpass - q * state1;
const bandpass = f * highpass + state1;
const newState1 = Math.max(-2, Math.min(2, Math.abs(bandpass) > 1e-10 ? bandpass : 0));
const newState2 = Math.max(-2, Math.min(2, Math.abs(lowpass) > 1e-10 ? lowpass : 0));
return {
output: bandpass,
state1: newState1,
state2: newState2
};
}
private softClip(x: number): number {
if (x > 1) {
return 1;
} else if (x < -1) {
return -1;
} else if (x > 0.66) {
return (3 - (2 - 3 * x) ** 2) / 3;
} else if (x < -0.66) {
return -(3 - (2 - 3 * -x) ** 2) / 3;
} else {
return x;
}
}
}

View File

@ -0,0 +1,390 @@
import type { SynthEngine, PitchLock } from './SynthEngine';
interface ParticleNoiseParams {
// Particle characteristics
density: number;
impulseLength: number;
impulseLengthVariation: number;
// Pitch characteristics (affects filter frequency)
basePitch: number;
pitchVariation: number;
// Texture
noiseColor: number;
filterResonance: number;
clickiness: number;
// Spatial
stereoSpread: number;
panSpeed: number;
// Dynamics
globalEnvAttack: number;
globalEnvDecay: number;
velocity: number;
}
export class ParticleNoise implements SynthEngine {
getName(): string {
return 'Particle';
}
getDescription(): string {
return 'Very short noise impulses and clicks generator';
}
getType() {
return 'generative' as const;
}
randomParams(pitchLock?: PitchLock): ParticleNoiseParams {
const densityBias = Math.random();
let density: number;
let impulseLength: number;
let impulseLengthVariation: number;
if (densityBias < 0.5) {
// Very sparse particles
density = 0.01 + Math.random() * 0.08;
impulseLength = 0.01 + Math.random() * 0.04;
impulseLengthVariation = 0.5 + Math.random() * 0.4;
} else if (densityBias < 0.8) {
// Sparse particles
density = 0.1 + Math.random() * 0.15;
impulseLength = 0.008 + Math.random() * 0.03;
impulseLengthVariation = 0.3 + Math.random() * 0.4;
} else {
// Medium density
density = 0.3 + Math.random() * 0.25;
impulseLength = 0.005 + Math.random() * 0.02;
impulseLengthVariation = 0.15 + Math.random() * 0.35;
}
let basePitch: number;
if (pitchLock?.enabled) {
basePitch = Math.max(0, Math.min(1, (pitchLock.frequency - 100) / 2000));
} else {
basePitch = 0.2 + Math.random() * 0.7;
}
const pitchVariation = Math.random() * 0.6;
const noiseColor = Math.random();
const filterResonance = Math.random() * 0.5;
const clickiness = Math.random() * 0.8;
const stereoSpread = Math.random() * 0.8;
const panSpeed = Math.random() * 0.6;
const globalEnvAttack = Math.random() * 0.12;
const globalEnvDecay = 0.25 + Math.random() * 0.5;
const velocity = 0.6 + Math.random() * 0.4;
return {
density,
impulseLength,
impulseLengthVariation,
basePitch,
pitchVariation,
noiseColor,
filterResonance,
clickiness,
stereoSpread,
panSpeed,
globalEnvAttack,
globalEnvDecay,
velocity
};
}
mutateParams(params: ParticleNoiseParams, mutationAmount: number = 0.15, pitchLock?: PitchLock): ParticleNoiseParams {
const mutate = (value: number, amount: number = 0.15): number => {
return Math.max(0, Math.min(1, value + (Math.random() - 0.5) * amount));
};
return {
density: mutate(params.density, 0.2),
impulseLength: mutate(params.impulseLength, 0.2),
impulseLengthVariation: mutate(params.impulseLengthVariation, 0.2),
basePitch: pitchLock?.enabled ? params.basePitch : mutate(params.basePitch, 0.25),
pitchVariation: mutate(params.pitchVariation, 0.2),
noiseColor: mutate(params.noiseColor, 0.25),
filterResonance: mutate(params.filterResonance, 0.2),
clickiness: mutate(params.clickiness, 0.2),
stereoSpread: mutate(params.stereoSpread, 0.2),
panSpeed: mutate(params.panSpeed, 0.2),
globalEnvAttack: mutate(params.globalEnvAttack, 0.15),
globalEnvDecay: mutate(params.globalEnvDecay, 0.2),
velocity: mutate(params.velocity, 0.15)
};
}
generate(params: ParticleNoiseParams, sampleRate: number, duration: number, pitchLock?: PitchLock): [Float32Array, Float32Array] {
const numSamples = Math.floor(sampleRate * duration);
const left = new Float32Array(numSamples);
const right = new Float32Array(numSamples);
// Calculate number of grains based on density
const avgGrainsPerSecond = 2 + params.density * 80;
const totalGrains = Math.floor(avgGrainsPerSecond * duration);
// Pre-generate impulse timings and parameters
const impulses: Array<{
startTime: number;
duration: number;
filterFreq: number;
pan: number;
amplitude: number;
isClick: boolean;
}> = [];
const baseFilterFreq = pitchLock?.enabled ? pitchLock.frequency : 200 + params.basePitch * 3000;
for (let i = 0; i < totalGrains; i++) {
const startTime = Math.random() * duration;
const baseImpulseDuration = 0.0005 + params.impulseLength * 0.003;
const impulseDuration = baseImpulseDuration * (0.5 + Math.random() * params.impulseLengthVariation);
const filterOffset = (Math.random() - 0.5) * params.pitchVariation * baseFilterFreq * 2;
const filterFreq = Math.max(100, baseFilterFreq + filterOffset);
const pan = Math.random();
const amplitude = 0.5 + Math.random() * 0.5;
const isClick = Math.random() < params.clickiness;
impulses.push({
startTime,
duration: impulseDuration,
filterFreq,
pan,
amplitude,
isClick
});
}
// Sort impulses by start time for efficient processing
impulses.sort((a, b) => a.startTime - b.startTime);
// Noise state for colored noise generation
const pinkStateL = new Float32Array(7);
const pinkStateR = new Float32Array(7);
let brownStateL = 0;
let brownStateR = 0;
let impulseIndex = 0;
const activeImpulses: Array<{
impulse: typeof impulses[0];
startSample: number;
filterState1: number;
filterState2: number;
}> = [];
for (let i = 0; i < numSamples; i++) {
const t = i / sampleRate;
// Add new impulses that should start at this sample
while (impulseIndex < impulses.length && impulses[impulseIndex].startTime <= t) {
activeImpulses.push({
impulse: impulses[impulseIndex],
startSample: i,
filterState1: 0,
filterState2: 0
});
impulseIndex++;
}
// Global envelope
const globalEnv = this.globalEnvelope(
i,
numSamples,
params.globalEnvAttack,
params.globalEnvDecay,
duration,
sampleRate
);
// Pan modulation
const panLFO = Math.sin(2 * Math.PI * (0.1 + params.panSpeed * 2) * t);
let sampleL = 0;
let sampleR = 0;
// Render all active impulses
for (let g = activeImpulses.length - 1; g >= 0; g--) {
const active = activeImpulses[g];
const impulse = active.impulse;
const impulseSample = i - active.startSample;
const impulseTime = impulseSample / sampleRate;
if (impulseTime >= impulse.duration) {
activeImpulses.splice(g, 1);
continue;
}
const impulsePhase = impulseTime / impulse.duration;
// Very fast exponential decay envelope
const impulseEnv = Math.exp(-impulsePhase * 15);
// Generate noise burst
const whiteL = Math.random() * 2 - 1;
const whiteR = Math.random() * 2 - 1;
brownStateL = this.updateBrownState(brownStateL, whiteL);
brownStateR = this.updateBrownState(brownStateR, whiteR);
let noiseL = this.selectNoiseColor(params.noiseColor, whiteL, pinkStateL, brownStateL);
let noiseR = this.selectNoiseColor(params.noiseColor, whiteR, pinkStateR, brownStateR);
// For clicks, use pure white noise burst
if (impulse.isClick) {
noiseL = whiteL;
noiseR = whiteR;
} else if (params.filterResonance > 0.1) {
// Apply resonant filter for tonal color
const resonance = 2 + params.filterResonance * 8;
const filtered = this.stateVariableFilter(
noiseL,
impulse.filterFreq,
resonance,
active.filterState1,
active.filterState2
);
active.filterState1 = filtered.state1;
active.filterState2 = filtered.state2;
noiseL = filtered.output;
noiseR = filtered.output;
}
// Apply impulse envelope and amplitude
const impulseOutput = noiseL * impulseEnv * impulse.amplitude * params.velocity;
// Apply panning with modulation
const panMod = impulse.pan + panLFO * params.stereoSpread * 0.15;
const panClamp = Math.max(0, Math.min(1, panMod));
const panL = Math.cos(panClamp * Math.PI * 0.5);
const panR = Math.sin(panClamp * Math.PI * 0.5);
sampleL += impulseOutput * panL;
sampleR += impulseOutput * panR * (impulse.isClick ? 1 : 1 + (Math.random() - 0.5) * params.stereoSpread * 0.2);
}
// Apply global envelope
sampleL *= globalEnv;
sampleR *= globalEnv;
// Soft clipping
left[i] = this.softClip(sampleL * 0.7);
right[i] = this.softClip(sampleR * 0.7);
}
// Normalize
let peak = 0;
for (let i = 0; i < numSamples; i++) {
peak = Math.max(peak, Math.abs(left[i]), Math.abs(right[i]));
}
if (peak > 0.001) {
const normGain = 0.95 / peak;
for (let i = 0; i < numSamples; i++) {
left[i] *= normGain;
right[i] *= normGain;
}
}
return [left, right];
}
private globalEnvelope(
sample: number,
totalSamples: number,
attack: number,
decay: number,
duration: number,
sampleRate: number
): number {
const attackSamples = Math.floor(attack * duration * sampleRate);
const phase = sample / totalSamples;
if (sample < attackSamples && attackSamples > 0) {
const attackPhase = sample / attackSamples;
return attackPhase * attackPhase * (3 - 2 * attackPhase);
}
const decayRate = Math.max(decay, 0.1);
const decayPhase = (sample - attackSamples) / (totalSamples - attackSamples);
return Math.exp(-decayPhase / decayRate);
}
private stateVariableFilter(
input: number,
cutoff: number,
resonance: number,
state1: number,
state2: number
): { output: number; state1: number; state2: number } {
const normalizedFreq = Math.min(cutoff / 44100, 0.48);
const f = 2 * Math.sin(Math.PI * normalizedFreq);
const q = Math.max(1 / Math.min(resonance, 20), 0.01);
const lowpass = state2 + f * state1;
const highpass = input - lowpass - q * state1;
const bandpass = f * highpass + state1;
const newState1 = Math.max(-3, Math.min(3, Math.abs(bandpass) > 1e-10 ? bandpass : 0));
const newState2 = Math.max(-3, Math.min(3, Math.abs(lowpass) > 1e-10 ? lowpass : 0));
return {
output: bandpass,
state1: newState1,
state2: newState2
};
}
private updateBrownState(brownState: number, whiteNoise: number): number {
return (brownState + whiteNoise * 0.02) * 0.98;
}
private selectNoiseColor(
colorParam: number,
whiteNoise: number,
pinkState: Float32Array,
brownState: number
): number {
if (colorParam < 0.33) {
return whiteNoise;
} else if (colorParam < 0.66) {
pinkState[0] = 0.99886 * pinkState[0] + whiteNoise * 0.0555179;
pinkState[1] = 0.99332 * pinkState[1] + whiteNoise * 0.0750759;
pinkState[2] = 0.96900 * pinkState[2] + whiteNoise * 0.1538520;
pinkState[3] = 0.86650 * pinkState[3] + whiteNoise * 0.3104856;
pinkState[4] = 0.55000 * pinkState[4] + whiteNoise * 0.5329522;
pinkState[5] = -0.7616 * pinkState[5] - whiteNoise * 0.0168980;
const pink = pinkState[0] + pinkState[1] + pinkState[2] + pinkState[3] +
pinkState[4] + pinkState[5] + pinkState[6] + whiteNoise * 0.5362;
pinkState[6] = whiteNoise * 0.115926;
return pink * 0.11;
} else {
return brownState * 2.5;
}
}
private softClip(x: number): number {
if (x > 1) {
return 1;
} else if (x < -1) {
return -1;
} else if (x > 0.66) {
return (3 - (2 - 3 * x) ** 2) / 3;
} else if (x < -0.66) {
return -(3 - (2 - 3 * -x) ** 2) / 3;
} else {
return x;
}
}
}

View File

@ -14,6 +14,8 @@ import { AdditiveEngine } from './AdditiveEngine';
import { Snare } from './Snare';
import { BassDrum } from './BassDrum';
import { HiHat } from './HiHat';
import { ParticleNoise } from './ParticleNoise';
import { DustNoise } from './DustNoise';
export const engines: SynthEngine[] = [
new Sample(),
@ -31,4 +33,6 @@ export const engines: SynthEngine[] = [
new Ring(),
new KarplusStrong(),
new AdditiveEngine(),
new ParticleNoise(),
new DustNoise(),
];

View File

@ -0,0 +1,205 @@
import type { AudioProcessor } from './AudioProcessor';
export class Resonator implements AudioProcessor {
private readonly sampleRate = 44100;
getName(): string {
return 'Resonator';
}
getDescription(): string {
return 'Multi-band resonant filter bank that adds tonal character through resonance';
}
process(
leftChannel: Float32Array,
rightChannel: Float32Array
): [Float32Array, Float32Array] {
const length = leftChannel.length;
const numResonators = Math.floor(Math.random() * 3) + 2; // 2-4 resonators
const baseFreq = Math.random() * 200 + 100; // 100-300 Hz base frequency
const spread = Math.random() * 0.6 + 0.4; // 0.4-1.0 harmonic spread
const resonance = Math.random() * 8 + 4; // Q factor 4-12
const mix = Math.random() * 0.6 + 0.3; // 30-90% wet
const stereoSpread = Math.random() * 0.2; // 0-20% stereo detuning
const modulationRate = Math.random() * 0.8 + 0.1; // 0.1-0.9 Hz modulation
const modulationDepth = Math.random() * 0.3 + 0.1; // 10-40% pitch modulation
const drive = Math.random() * 0.5; // 0-50% input drive
const leftOut = new Float32Array(length);
const rightOut = new Float32Array(length);
const leftResonators: Array<{
freq: number;
state1: number;
state2: number;
}> = [];
const rightResonators: Array<{
freq: number;
state1: number;
state2: number;
}> = [];
// Create resonator banks with harmonic or inharmonic relationships
const isHarmonic = Math.random() < 0.6;
for (let i = 0; i < numResonators; i++) {
let freqMultiplier: number;
if (isHarmonic) {
// Harmonic series
freqMultiplier = Math.pow(2, i * spread);
} else {
// Inharmonic/stretched partials
freqMultiplier = Math.pow(2, i * spread * (1 + Math.random() * 0.4));
}
const leftFreq = baseFreq * freqMultiplier;
const rightFreq = leftFreq * (1 + (Math.random() - 0.5) * stereoSpread);
leftResonators.push({
freq: leftFreq,
state1: 0,
state2: 0
});
rightResonators.push({
freq: rightFreq,
state1: 0,
state2: 0
});
}
for (let i = 0; i < length; i++) {
const t = i / this.sampleRate;
// LFO for frequency modulation
const lfo = Math.sin(2 * Math.PI * modulationRate * t);
// Apply input drive
let leftInput = leftChannel[i];
let rightInput = rightChannel[i];
if (drive > 0.1) {
const driveAmount = 1 + drive * 2;
leftInput = this.softSaturation(leftInput * driveAmount);
rightInput = this.softSaturation(rightInput * driveAmount);
}
// Process through all resonators
let leftResonant = 0;
let rightResonant = 0;
for (let r = 0; r < numResonators; r++) {
const leftRes = leftResonators[r];
const rightRes = rightResonators[r];
// Modulate frequency
const freqMod = 1 + lfo * modulationDepth;
const leftModFreq = Math.min(leftRes.freq * freqMod, this.sampleRate * 0.45);
const rightModFreq = Math.min(rightRes.freq * freqMod, this.sampleRate * 0.45);
// Apply resonant filter
const leftFiltered = this.stateVariableFilter(
leftInput,
leftModFreq,
resonance,
leftRes.state1,
leftRes.state2
);
leftRes.state1 = leftFiltered.state1;
leftRes.state2 = leftFiltered.state2;
const rightFiltered = this.stateVariableFilter(
rightInput,
rightModFreq,
resonance,
rightRes.state1,
rightRes.state2
);
rightRes.state1 = rightFiltered.state1;
rightRes.state2 = rightFiltered.state2;
// Amplitude compensation for number of resonators
const ampScale = 1 / Math.sqrt(numResonators);
leftResonant += leftFiltered.output * ampScale;
rightResonant += rightFiltered.output * ampScale;
}
// Mix dry and wet signals
const dryGain = Math.sqrt(1 - mix);
const wetGain = Math.sqrt(mix);
leftOut[i] = leftChannel[i] * dryGain + leftResonant * wetGain;
rightOut[i] = rightChannel[i] * dryGain + rightResonant * wetGain;
// Soft clipping
leftOut[i] = this.softClip(leftOut[i]);
rightOut[i] = this.softClip(rightOut[i]);
}
this.normalizeOutput(leftOut, rightOut);
return [leftOut, rightOut];
}
private stateVariableFilter(
input: number,
cutoff: number,
resonance: number,
state1: number,
state2: number
): { output: number; state1: number; state2: number } {
const normalizedFreq = Math.min(cutoff / this.sampleRate, 0.48);
const f = 2 * Math.sin(Math.PI * normalizedFreq);
const q = Math.max(1 / Math.min(resonance, 20), 0.01);
const lowpass = state2 + f * state1;
const highpass = input - lowpass - q * state1;
const bandpass = f * highpass + state1;
// Clamp states to prevent instability
const newState1 = Math.max(-3, Math.min(3, Math.abs(bandpass) > 1e-10 ? bandpass : 0));
const newState2 = Math.max(-3, Math.min(3, Math.abs(lowpass) > 1e-10 ? lowpass : 0));
return {
output: bandpass,
state1: newState1,
state2: newState2
};
}
private softSaturation(x: number): number {
return x / (1 + Math.abs(x));
}
private softClip(sample: number): number {
const threshold = 0.95;
if (Math.abs(sample) < threshold) {
return sample;
}
const sign = sample < 0 ? -1 : 1;
const abs = Math.abs(sample);
return sign * (threshold + (1 - threshold) * Math.tanh((abs - threshold) / (1 - threshold)));
}
private normalizeOutput(leftOut: Float32Array, rightOut: Float32Array): void {
let maxPeak = 0;
for (let i = 0; i < leftOut.length; i++) {
maxPeak = Math.max(maxPeak, Math.abs(leftOut[i]), Math.abs(rightOut[i]));
}
if (maxPeak > 0.01) {
const targetPeak = 0.95;
const normalizeGain = Math.min(1.0, targetPeak / maxPeak);
for (let i = 0; i < leftOut.length; i++) {
leftOut[i] *= normalizeGain;
rightOut[i] *= normalizeGain;
}
}
}
}

View File

@ -24,6 +24,7 @@ import { RingModulator } from './RingModulator';
import { Waveshaper } from './Waveshaper';
import { DCOffsetRemover } from './DCOffsetRemover';
import { TrimSilence } from './TrimSilence';
import { Resonator } from './Resonator';
const processors: AudioProcessor[] = [
new SegmentShuffler(),
@ -51,6 +52,7 @@ const processors: AudioProcessor[] = [
new Waveshaper(),
new DCOffsetRemover(),
new TrimSilence(),
new Resonator(),
];
export function getRandomProcessor(): AudioProcessor {